Jing ZHANG, Ph.D.

Associate Professor

Department of Automation / Center for Quantum Information Science and Technology, TNLIST

Tsinghua University, Beijing 100084, China

Tel: +86 (10) 6279 7485

Fax: +86 (10) 6279 7485

Email: jing-zhang@tsinghua.edu.cn

Ph. D. in Control Science and Engineering, Tsinghua University, Beijing, China,2006

B.S. in Applied Mathematics, Tsinghua University, Beijing, China,2001

Associate Professor, Department of Automation, Tsinghua University, Jan.2011-

Lecturer, Department of Automation, Tsinghua University, May 2008 - Dec.2010

Post-Doc, Department of Automation, Tsinghua University, Jul. 2006 - May 2008

Visiting Assistant Professor, Department of Physics and National Center for Theoretical Sciences, National Cheng Kung Universty, Taiwan, Apr. 2010 - Jul.2010

Visiting Researcher, The Digital Materials Laboratory, The Institute for Physical and Chemical Research (RIKEN), Japan, Jan. 2008 - Mar. 2008, Jul. 2008 - Feb.2009

Optomechanics (theory and experiment);

Microresonators (experiment);

Quantum information processing and control in superconducting circuit;

Quantum measurement and quantum feedback control;

Reviewer of the Journals:

IEEE Transactions on Automatic Control, Automatica. Physica A, Chinese Science Bulletin. Frontiers of Electrical and Electronic Engineering in China, Frontiers of Physics in China, Journal of Systems Science and Complexity, Journal of Control Theory and Applications, Journal of the Graduate School of the Chinese Academy of Sciences

Reviewer of the Conferences:

Control and Decision Conference 2007，2008，European Control Conference 2007，International Conference on Quantum, Nano and Micro Technologies 2008

[1] Control of quantum and micro/nano systems, Outstanding youth fund of the natural science foundation of China under Grant No. 61622306, 2017.1-2019.12.

[2] Research on optomechanics in micotoroid resonators and its applications, National Natural Science Foundation of China under Grant No. 11674194, 2017.1-2019.12

[3] Research on nonlinear quantum feedback control network in superconducting circuits and its applications, National Natural Science Foundation of China under Grant No. 61174084, 2012.1-2015.12.

[4] Research on quantum feedback control in on-chip systems, Tsinghua University Initiative Scientific Research Program, 2013.10-2016.9.

[5] Information transmission and control in on-chip microresonators and optomechanical systems, Tsinghua National Laboratory for Information Science and Technology (TNList) Cross-discipline Foundation, 2014.1-2015.12.

[6] Research on hybrid control systems by using classical devices to measure and control quantum systems, National Natural Science Foundation of China under Grant No. 60704017, 2008.1-2010.12.

[7] Controllable nano-manipulation on graphene. Project of Robotics National Key Laboratory, 2012.1-2013.12.

[8] Physical Foundation of solid-state quantum computation devices, National Basic Research Program of China (973 Program) under Grant No. 2014CB921401, 2014.1-2019.12.

[9] Quantum control theory and experimental verification systems, National Natural Science Foundation of China under Grant No. 61134008, 2012.1-2016.12.

[10] Research on quantum behaviors and coherent manipulation of optomechanical systems, National Natural Science Foundation of China for Overseas and Hong Kong and Macao Scholars under Grant no. 61328502, 2014.1-2015.12.

[11] Research on quantization and control of nano manipulation systems, China Postdoctoral Science Foundation, 2007.1-2008.7.

International Federation of Automatic Control (IFAC) Young Author Award, 2011

Outstanding youth fund of the natural science foundation of China

Excellent Doctoral Dissertation of Tsinghua University

Journal papers

[1] J. Zhang, Y.-X. Liu, R.-B. Wu, K. Jacobs, and F. Nori, Quantum feedback: theory, experiments, and applications, accepted by Physics Reports.

[2] Z. P. Liu, J. Zhang* (co-first author), S. K. ？zdemir, B. Peng, H. Jing, X.-Y. Lü, C.-W. Li, L. Yang, F. Nori, and Y.-X. Liu, Metrology with PT-Symmetric Cavities: Enhanced Sensitivity near the PT-Phase Transition, Phys. Rev. Lett. 117, 110802 (2016).

[3] F. Monifi, J. Zhang*(co-first auther), ？. K. ？zdemir*, B. Peng, Y.-X. Liu, F. Bo, F. Nori and L. Yang*, Optomechanically-induced stochastic resonance and chaos transfer between optical fields, Nature Photonics 10, 399-405 (2016).

[4] J. Zhang*, B. Peng, S. K. Ozdemir, Y.-X. Liu, H. Jing, X.-Y. Lü, Y.-L. Liu, L. Yang, and F. Nori, Giant nonlinearity via breaking parity-time symmetry: A route to low-threshold phonon diodes, Phys. Rev. B 92, 115407 (2015).

[5] N. Yang, J. Zhang*, H. Wang, Y.-X. Liu, R.-B. Wu, L.-Q. Liu, C.-W. Li, and F. Nori, Noise suppression of on-chip mechanical resonators by chaotic coherent feedback, Phys. Rev. A 92, 033812 (2015).

[6] C.-L. Zhu, N. Yang, Y.-X. Liu, F. Nori, and J. Zhang*, Entanglement distribution over quantum code-division multiple-access networks, Phys. Rev. A 92, 042327 (2015).

[7] Y. L. Liu, Z. P. Liu and J. Zhang, Coherent-feedback-induced controllable optical bistability and photon blockade, J. Phys. B: At. Mol. Opt. Phys. 10, 105501 (2015).

[8] H. Jing, S. K. Ozdemir, Z. Geng, J. Zhang, X.-Y. Lü, B. Peng, L. Yang, and F. Nori, Optomechanically-induced transparency in partiy-time-symmetric microresonators, Sci. Rep. 5, 9663 (2015).

[9] X.-Y. Lü, Y. Wu, J. R. Johansson, H. Jing, J. Zhang, and F. Nori, Squeezed optomechanics with phase-matched amplification and dissipation, Phys. Rev. Lett. 114, 093602 (2015).

[10] H. Wang, Z. X. Wang, J. Zhang, ？. K. ？zdemir, L. Yang, and Y.-X. Liu, Phonon amplification in two coupled cavities containing one mechanical resonator, Phys. Rev. A 90, 053814 (2014).

[11] H. Jing, S.？K. ？zdemir, X.-Y. Lü, J. Zhang, L. Yang, and F. Nori, PT-Symmetric Phonon Laser, Phys. Rev. Lett. 113, 053604 (2014).

[12] J. Zhang*, Y.-X. Liu, S. K. Ozdemir, R. B. Wu, F. F. Gao, X. B. Wang, L. Yang and F. Nori. Quantum internet using code division multiple access. Sci. Rep. 3, 2211 (2013) (Nature series journal).

[13] J. Zhang*, Y.-X. Liu, R. B. Wu, K. Jacobs, and F. Nori. Non-Markovian quantum input-output networks. Physical Review A 87, 032117 (2013).

[14] Z.-P. Liu, H. Wang, J. Zhang*, Y.-X. Liu, R.-B. Wu, C.-W. Li, and F. Nori. Feedback-induced nonlinearity and superconducting on-chip quantum optics. Physical Review A 88, 063851 (2013).

[15] X.-W. Xu, H. Wang, J. Zhang, and Y.-X. Liu. Engineering of nonclassical motional states in optomechanical systems. Physical Review A 88, 063819 (2013).

[16] R. B. Wu, T. F. Li, A. G. Kofman, J. Zhang, Yu-xi Liu, Yu. A. Pashkin, J.-S. Tsai, and Franco Nori. Spectral analysis and identification of noises in quantum systems. Physical Review A, 87: 022324 (2013).

[17] J. Zhang*, R. B. Wu, Y.-X. Liu, C. W. Li, and T. J. Tarn. Quantum coherent nonlinear feedbacks with applications to quantum optics on chip. IEEE Transaction on Automatic Control, 57: 1997 (2012) (Regular paper).

[18] J. Zhang*, R. B. Wu, L. Miao, Lei, N. Xi, C. W. Li, Y. C. Wang, and T. J. Tarn. Suppressing nano-scale stick-slip motion by feedback. J. Appl. Phys. 111: 054308 (2012).

[19] S.-B. Xue, R.-B. Wu, W.-M. Zhang, J. Zhang and T.-J. Tarn. Coherent feedback control of non-Markovian open Boson systems via engineered quantum fields. Physical Review A, 86: 052304 (2012).

[20] H. Wang, H. C. Sun, J. Zhang, and Y.-X. Liu. Transparency and amplification in a hybrid system of the mechanical resonator and circuit QED. SCIENCE CHINA-Physics, Mechanics & Astronomy, 55: 2264 (2012).

[21] R. B. Wu, J. Zhang, C. W. Li, G. L. Long, and T. J. Tarn. Control problems in quantum systems. Chinese Science Bulletin, 57: 2194 (2012).

[22] J. Zhang*, Y.-X. Liu, W. M. Zhang, L. A. Wu, R. B. Wu, and T. J. Tarn. Determinstic chaos can act as a decoherence suppressor. Physical. Review B, 84: 214304 (2011).

[23] S. B. Xue, J. Zhang*, R. B. Wu, C. W. Li, and T.-J. Tarn. Quantum operation for a one-qubit system under a non-Markovian environment. Journal of Physics B: Atomic Molecular and Optical Physics, 44: 154016 (2011).

[24] J. Zhang*， R.-B. Wu, C.-W. Li T.-J. Tarn. Protecting coherence and entanglement by quantum feedback controls. IEEE Transactions on Automation Control, 55: 619-633 (2010) (Regular Paper).

[25] J. Zhang*, Y.-X. Liu, R.-B. Wu, C. W. Li, and T. J. Tarn. Transition from weak to strong measurements by nonlinear quantum feedback control. Physical. Review A, 82: 022101 (2010).

[26] J. Zhang*, Y. X. Liu, and F. Nori, Cooling and squeezing the fluctuations of a nanomechanical beam by indirect quantum feedback control, Physical Review A, 79: 052102 (2009). (quant-ph/ 0902.2526)

[27] J. Zhang*, Y. X. Liu, C. W. Li, T. J. Tarn, and F. Nori. Generating stationary entangled states in superconducting qubits. Physical Review A 79: 052308 (2009). (quant-ph/0808.0395)

[28] J. Zhang*, R. B. Wu, C. W. Li, and T. J. Tarn. Using a squeezed field to protect two-atom entanglement against spontaneous emissions. Journal of Physics A: Mathematical and Theoretical, 42: 035304 (2009). (quant-ph/0807.0965)

[29] J. Zhang*, C. W. Li, T. J. Tarn, J. W. Wu, Analytically solvable two-qubit entanglement monotone, Physical Review A, 76: 032306 (2007).

[30] J. Zhang*, R. B. Wu, C. W. Li, T. J. Tarn, and J. W. Wu. Asymptotically noise decoupling for Markovian open quantum systems, Physical Review A, 75: 022324 (2007). (quant-ph/0701175)

[31] J. W. Wu, C. W. Li, T. J. Tarn, and J. Zhang. Optimal BangBang control for SU(1,1) Coherent States. Physical. Review A, 76: 053403 (2007).

[32] J. Zhang*, C.W. Li, R.B. Wu, T.J. Tarn, J.W. Wu. Quasi multipartite entanglement measure based on quadratic functions, Physical Review A, 73: 022319 (2006). (quant-ph/0512256)

[33] J. Zhang*, C.W. Li. Decoherence suppression of two-level quantum systems based on coherent control, Control and Decision, 21: 508-512 (2006). (in Chinese)

[34] J. W. Wu, C. W. Li, R. B. Wu, T. J. Tarn, and J. Zhang. Quantum control by decomposition of SU(1,1), Journal of Physics A: Mathematical and General, 39: 13531-13551 (2006).

[35] J. Zhang*, C.W. Li, R.B. Wu, T.J. Tarn, X. S. Liu, Maximal suppression of decoherence in Markovian quantum systems, Journal of Physics A: Mathematical and General, 38: 6587-6601 (2005).

[36] X.S. Liu, R.B. Wu, Y. Liu, J. Zhang and G.L. Long. Dynamical control of adiabatic decoherence in the single three-level atom, Journal of Optics B: Quantum and Semiclassical Optics, 7: 268-293 (2005).

[37] J. Zhang*, C.W. Li, R.B. Wu, Coherent control modeling of quantum computers in open environment, ACTA AUTOMATICA SINICA, 31: 759-764 (2005). (in Chinese)

[38] J. Zhang*, C.W. Li, R.B. Wu, Output feedback control of quantum mechanical systems, Control and Decision, 20: 607-610, 615 (2005). (in Chinese)

Conference papers

[1] H. Sun, J. Zhang*, R.-B. Wu, H. Rabitz, T.-J. Tarn. Optimal control protocols can be exponentially accelerated by quantum algorithms. IEEE Conference on Decision and Control, 2016.

[2] N. Yang, J. Zhang, Z. P. Liu, C. W. Li, and T. J. Tarn. Cooling of optomechanical system by coherent feedback. Proceeding of the 11th World Congress on Intelligent Control and Automation (WCICA), pp. 2103-2107, Shenyang, China, 29 June-4 July 2014.

[3] R. B. Wu, J. Zhang, Y. X. Liu, C. W. Li, and T. J. Tarn. Control of quantum mechanical systems - Recent works in Tsinghua University. Proceeding of the 11th World Congress on Intelligent Control and Automation (WCICA), pp. 1310-1317, Shenyang, China, 29 June-4 July 2014.

[4] W. B. Dong, R. B. Wu, J. Zhang, C. W. Li, and T. J. Tarn. Quantum control model for spatial propagation of. electromagnetic fields in dielectrics. IEEE Conference on Decision and Control, 2013.

[5] R.-B. Wu, J. Zhang, C. W. Li and T.-J. Tarn. Frequency-domain model of quantum control systems. IEEE Conference on Decision and Control, 2012.

[6] J. Zhang, R. B. Wu, C. W. Li, and T. J. Tarn. Quantum chaotic communication. 10th World Congress on Intelligent Control and Automation, pp. 1854, 2012.

[7] S. B. Xue, R. B. Wu, and J. Zhang. Coherent quantum feedback rejection of non-Markovian noises. 10th World Congress on Intelligent Control and Automation, pp. 2209, 2012.

[8] J. Zhang and R. B. Wu. Coherent nonlinear quantum feedback with applications to on-chip quantum optics. 18th IFAC World Congress, Milan, 2011.

[9] J. Zhang and R. B. Wu, Using chaotic device to suppress non-Markovian quantum noises, Proceedings of the 30th Chinese Control Conference, 2011, pp. 5346-5351, Yantai, China.

[10] S. B. Xue, J. Zhang, R. B. Wu, C. W. Li, and T. J. Tarn, Quantum operation for one non-Markovian qubit via AC control, Proceedings of the 30th Chinese Control Conference, 2011, pp. 5352-5357, Yantai, China.

[11] J. Zhang, L. Miao, R. B. Wu, N. Xi, C. W. Li, Y. C. Wang, and T. J. Tarn. Reducing stick-slip motion in one-dimensional nano manipulation by real-time feedback control. IEEE NANO 2010 Joint Symposium with NANO Korea, 2010/8/24.

[12] J. Zhang, R. B. Wu, Y. X. Liu, C. W. Li, and T. J. Tarn. Quantum-feedback-control induced bifurcation and its application to qubit readout. 48th Control and Decision Conference (CDC), Shanghai China, 2009.

[13] J. Zhang, R. B. Wu, C. W. Li, and T. J. Tarn. Bath-induced Control of Two-qubit Entanglement under Markovian Noises. 47th Control and Decision Conference (CDC), Cancun Mexico, 2008.

[14] J. W. Wu, C. W. Li, J. Zhang, Energy optimal control for SU(1,1)-type two-input quantum systems, Proceedings of the 26th Chinese Control Conference, Zhangjiajie, China, 2007.

[15] J. Zhang, C. W. Li, Noise decoupling decoherence suppression strategy for Markovian open quantum systems, Proceedings of the 25th Chinese Control Conference, Harbin, China, 2006.