孙家林 

    教授 

 

    清华大学物理系

    理科楼C205

    北京 100084 

 

    电话:010-62772687

    传真:010-62781604

    jlsun@tsinghua.edu.cn

 

个人简历

教育背景
1985黑龙江大学物理系理学学士
1996乌克兰哈尔科夫国立大学物理系数理博士
1996--1998清华大学物理系博士后研究
工作经历
1985-1996黑龙江大学物理系助教、讲师
1996--今清华大学物理系讲师、副教授、教授

教学

主要从事本科生高等物理实验、近代物理实验和普通物理实验课的教学和助教博士生的教学指导工作。曾获清华大学“清华之友—优秀教师奖”、 “小林华阳教学优秀奖” 和“洪燕华光优秀青年教师奖”等。作为教学骨干所承担的“基础物理实验课”先后于2004和2005年被评为“北京市高等学校精品课程”和“国家精品课程”。

研究领域

 

纳米结构与纳米光电子学研究组主要从事低维纳米材料制备、复合纳米结构设计及其光学和光电子学性能的实验研究,隶属于低维量子物理国家重点实验室。


主要研究方向:
1. 金属(Ag、Cu、Ni等)纳米材料制备及其物理性质研究。
2. 半导体(Ag2S、CuO、Cu2O、Si、TiO2等)纳米材料制备及其物理性质研究。
3. 基于(碳纳米管、石墨烯等)碳纳米材料的复合纳米结构设计、制备及其物理性质研究
4. 电子/离子导体低维复合纳米结构的设计、制备及其物理性质研究
5. 宽波段快响应纳米光电探测器件的设计、制备及其性能研究

 

承担的科研项目:
1. 3D打印太阳能电池工艺及设备研制(清华大学自主科研计划项目,2016~2018)
2. 电子/离子导体“芯/壳”型低维复合纳米结构的设计、制备及输运性质研究(国家自然科学基金项目,2014~2017)
3. 用固态离子学方法制备银纳米结构表面增强拉曼散射基底的性能及应用研究(教育部博士点博导类基金项目,2013~2015)
4. 基于低维碳纳米材料的离子调控型场效应管结构设计和性能研究(低维量子物理国家重点实验室自主研究项目,2013~2014)
5. 基于金属及半导体纳米线(管)异质结构阵列的太赫兹波探测技术原理研究(中国工程物理研究院科学技术基金项目,2012~2014)
6. “纳米异维结构”光电器件的设计、制备及性能研究(国家自然科学基金项目,2012~2015)
7. 过渡金属氧化物电阻开关效应及新型非挥发性电阻存储器的设计及应用研究(清华大学自主科研计划项目,2010~2013)
8. 一碳基团代谢扰动的表观遗传学研究(科技部973计划项目,2009~2011)
9. 表观遗传改变在重大出生缺陷发生中的作用机理研究(科技部973计划项目,2007~2012)
10. 利用近场光学显微镜研究金属纳米结构的纳米等离子体波激发效应(国家自然科学基金项目,2007~2008)
11. 高灵敏实时原位观测方法相关物理、化学基础问题及其在生命科学中的应用(教育部科学技术研究重大项目,2006~2007)
12. 用超离子导体薄膜在直流电场诱导下生长金属纳米线的机理和单根纳米线的物性研究(国家自然科学基金项目,2005~2007)
13. 用光学扫描成像和定域光谱技术研究植物根内皮层的发育(国家自然科学基金项目,2002~2004)
14. 用双色荧光近场显微技术研究细胞信息的跨膜传递(国家自然科学基金项目,1999~2001)
15. 用近场光学共焦显微技术研究蛋白分子跨膜相互作用(国家自然科学基金项目,1998~2002)
16. 铜(银)基复合超离子导体材料晶体薄膜制备研究及应用(北京市自然科学基金项目,1999~2002)
17. 利用激子谱研究含铜(银)及碱金属卤化物的新材料(教育部留学回国人员科研启动基金项目,1997~1998)

奖励、荣誉和学术兼职

清华之友-优秀教师奖  1999
“小林华阳”教学优秀奖  2000
清华大学实验技术成果奖  2002
第十五届全国发明展览会银奖 2005
清华大学班主任工作优秀奖 2005
“洪燕华光”优秀青年教师奖 2007
首都教育系统健康之星奖 2012

主要论著

出版合著学术专著2部, 在Nature Communications,Small,Scientific Reports, Journal of the American Chemical Society,Nano Research,Applied Physics Letters,Carbon, Nanotechnology等刊物发表学术论文100余篇,获得国家发明专利20余项。  
部分论著列表:
[1] Enhanced Photoelectric Performance of Composite Nanostructures Combining Monolayer Graphene and a RbAg4I5 Film, Applied Physics Letters, 2017, 110: 213106
[2] An Origami Perovskite Photodetector with Spatial Recognition Ability, ACS Applied Materials & Interfaces, 2017, 9(12): 10921-10928
[3] Fabrication of Au nanoparticle/double-walled carbon nanotube film/TiO2 nanotube array/Ti heterojunctions with low resistance state for broadband photodetectors, Physica B: Physics of Condensed Matter, 2017, 508: 1–6
[4] Free-Standing Reduced Graphene Oxide Thin Films with Ultra-High Carrier Mobility for Fast Photoelectric Devices, Carbon, 2017, 115: 561-570
[5] Self-Powered Ultra-broadband Photodetector Monolithically Integrated on a PMN-PT Ferroelectric Single Crystal, ACS Applied Materials & Interfaces, 2016, 8 (48): 32934–32939
[6] Terahertz-induced photothermoelectric response in graphene-metal contact structures, J. Phys. D: Appl. Phys. 2016, 49: 425101
[7] Perovskite CH3NH3PbI3(Cl) Single Crystals: Rapid Solution Growth, Unparalleled Crystalline Quality, and Low Trap Density toward 108 cm–3, Journal of the American Chemical Society, 2016, 138: 9409-9412
[8] Rapid, controllable growth of silver nanostructured surface-enhanced Raman scattering substrates for red blood cell detection, Scientific Reports, 2016, 6: 24503
[9] A self-powered photodetector based on CH3NH3PbI3 single crystal with asymmetric electrodes, Cryst Eng Comm, 2016, 18: 4405–4411
[10] High-stability Organic Red-light Photodetector for Narrowband Applications, Laser & Photonics Reviews, 2016, 10(3): 473–480
[11] Photothermoelectric Response of Graphene-Metal Contacts in the Terahertz Range, The 41th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 25-30 Sept., 2016, in Copenhagen, Denmark.
[12] High-Performance Planar-Type Photodetector on (100) Facet of MAPbI3 Single Crystal, Scientific Reports,2015, 5: 16563
[13] Terahertz photodetector based on double-walled carbon nanotube macrobundle–metal contacts, Optics Express, 2015, 23(10): 13348-13357
[14] Dynamic and Atomic-Scale Understanding of the Twin Thickness Effect on Dislocation Nucleation and Propagation Activities by in situ Bending of Ni Nanowires, Acta Materialia, 2015, 90: 194–203
[15] Self-powered ultrafast broadband photodetector based on p-n heterojunctions of CuO/Si nanowire array, ACS Applied Materials & Interfaces. 2014, 6(23): 20887-20894
[16] Influence of natural oxidation on the surface enhancement effect of silver nanoparticle films, J. Nanopart. Res. 2014, 16: 2634
[17] Electron transport in carbon nanotube/RbAg4I5 film composite nanostructures modulated by optical field, Applied Physics Letters, 2014, 104: 243111
[18] 《Nanowires: Synthesis, Electrical Properties and Uses in Biological》—“Rough Silver Nanowire, Nanobud and Nanoparticle Substrates: Preparation, Properties and Use in the SERS Detection of Biomacromolecules”, Nova Science Publishers, 2014, Chapter 2, pp. 59-88, ISBN: 978-1-63117-855-9
[19] Layer-by-layer deposition of MnSi1.7 film with high Seebeck coefficient and low electrical resistivity, Materials chemistry and physics, 2014, 146: 346-353
[20] Enhancement of the thermoelectric power factor of MnSi1.7 film by modulation doping of Al and Cu, Appl. Phys. A, 2014, 114: 943-949
[21] Effect of microwave irradiation on carbon nanotube fibers: exfoliation, structural change and strong light emission, RSC Advances, 2014, 4(30): 15502-15506
[22] Photocurrent response of carbon nanotube–metal heterojunctions in the terahertz range, Optics Express, 2014, 22(5): 5895
[23] Ultra-Broadband Photodetector for the Visible to Terahertz Range by Self-Assembling Reduced Graphene Oxide-Silicon Nanowire Array Heterojunctions, small, 2014, 10(12): 2345–2351
[24] Ion-modulated nonlinear electronic transport in carbon nanotube bundle/RbAg4I5 thin film composite nanostructures, Journal of Applied Physics, 2014, 115: 044302
[25] Solution synthesis of Cu2O/Si radial nanowire array heterojunctions for broadband photodetectors, Materials Research Express, 2014, 1(1): 015002
[26] Room-Temperature Terahertz Detection by Carbon Nanotube/Metal Heterostructures, The 39th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 14-19 Sept. 2014, in Tucson, AZ, USA.
[27] A new style field effect transistor based on ionic-electronic conductor composite nanostructures, The 14th Asian Conference on Solid State Ionics, 24-27 June. 2014, in UTown, NUS, Singapore
[28] 基于金/硅纳米线阵列肖特基结的自驱动式的可见-近红外光探测器性能研究。影像科学与光化学,2014, 32(6): 532-541
[29] Significantly enhanced photoresponse in carbon nanotube film/TiO2 nanotube array heterojunctions by pre-electroforming, Nanotechnology, 2013, 24(46): 465203
[30] In situ atomic-scale observation of continuous and reversible lattice deformation beyond the elastic limit, Nature Communications, 2013, 4: 2413
[31] Fabrication of double-walled carbon nanotube ?lm/TiO2 nanotube array heterojunctions with length-dependent photoresponse for broad band photodetectors, International Journal of Minerals, Metallurgy and Materials, 2013, 20(3): 307-312
[32] Noninvasive three-dimensional live imaging methodology for the spindles at meiosis and mitosis, Journal of Biomedical Optics 2013, 18(5): 050505
[33] Significantly enhanced thermoelectric properties of ultralong double-walled carbon nanotube bundle, Applied Physics Letters, 2013,102(5): 053105
[34] Fabrication of copper nanowires by a solid-state ionics method and their surface enhanced Raman scattering effect, Materials Letters, 2013, 92: 143-146
[35] Understanding three-dimensional spatial relationship between the mouse second polar body and first cleavage plane with full-field optical coherence tomography, Journal of Biomedical Optics, 2013, 18(1): 010503
[36] Terahertz Response of Carbon Nanotube/Metal Heterojunctions, The 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 1-6 Sept. 2013, in Mainz, Germany
[37] Thermoelectric effect of silicon films with shallow- and deep-level acceptors, Int. J. Mod. Phys. B, 2012, 26(31): 1250187
[38] Negative and positive photoconductivity modulated by light wavelengths in carbon nanotube film, Applied Physics Letters, 2012, 101, 123117
[39] Fabrication of Highly Rough Ag Nanobud Substrates and Surface-Enhanced Raman Scattering of λ-DNA Molecules, Journal of Nanomaterials, 2012, 820739
[40] Label-free subcellular 3D live imaging of preimplantation mouse embryos with full-field optical coherence tomography, Journal of Biomedical Optics, 2012, 17(7): 070503
[41] The wavelength dependent photovoltaic effects caused by two different mechanisms in carbon nanotube film/CuO nanowire array heterodimensional contacts, Applied Physics Letters, 2012, 100: 251113
[42] Fabrication of double-walled carbon nanotube film/Cu2O nanoparticle film/TiO2 nanotube array heterojunctions for photosensors, Applied Physics Letters, 2012, 100, 253113
[43] Evolution of resistive switching polarity in Au/Ar+ bombarded SrTi0.993Nb0.007O3/In sandwiches, Chinese Science Bulletin, 2012, 57(1): 20-24
[44] High magnetic field annealing effect on visible photoluminescence enhancement of TiO2 nanotube arrays, Applied Physics Letters, 2012, 100: 043106
[45] Fabrication of high performance surface enhanced Raman scattering substrates by a solid-state ionics method. Nanotechnology, 2012, 23: 125705
[46] Electric current induced extrinsic asymmetric I-V behavior in (La, Ca)MnO(3) epitaxial thin films on single crystal SrTiO(3) substrates. Solid State Communications, 2011, 151(13): 943-946
[47] Negative photoconductivity induced by surface plasmon polaritons in the Kretschmann con?guration, Chinese Physics Letters, 2011, 28(12): 127302
[48] Fabrication, temperature conductance and photoconductance characteristics of the macroscopic long Ag2S nanowire bundle, Acta Physica Sinica, 2011, 60(7): 077304
[49] Novel photodetectors based on double-walled carbon nanotube film/TiO2 nanotube array heterodimensional contacts, Nano Research, 2011, 4(9): 901-907
[50] Fabrication of carbon nanotube/silicon nanowire array heterojunctions and their silicon nanowire length dependent photoresponses, Chemical Physics Letters, 2011, 501: 461-465
[51] Fabrication and photoconductivity of macroscopically long coaxial structured Ag/Ag2S nanowires with different core-to-shell thickness ratios, Nanotechnology, 2011, 22, 035202
[52] Negative photoconductivity induced by surface plasmon polaritons in Ag nanowire macrobundles, Optics Express, 2010, 18(5): 4066-4073
[53] Metal-insulator transition in Au-NiO-Ni dual schottky nanojunctions, Nanotechnology, 2009, 20: 455203
[54] Fabrication and photoelectrical behavior of macroscopic-long silver nanowire ribbon / bulk metal contact, Journal of Nanoscience and Nanotechnology, 2009, 9: 1337-1340
[55] Nonlinear refraction of silver nanowires from nanosecond to femtosecond laser excitation, Applied Physics B, 2009, 94: 233-237
[56] Fabrication of oriented arrays of porous gold microsheaths using aligned silver nanowires as sacrificial template, Materials Letters, 2009, 63: 148-150
[57] Field-induced semiconductor-metal transition in individual NiO–Ni Schottky nanojunction, Applied Physics Letters, 2008, 93: 152107
[58] Disordered multiwalled carbon nanotube mat for light spot position detecting Applied Physics A-Materials Science & Processing, 2008, 91: 229-233
[59] The prominent photoinduced voltage effect of as-prepared macroscopically long Ag core/Ni shell nanoheterojunctions Nanotechnology, 2008, 19: 085703
[60] 《Nanotechnology Research: New Nanostructures, Nanotubes and Nanofibers》—“Macroscopic-long metal nanostructures and corresponding metal chalcogenide semiconductors”, Nova Science Publishers, 2008, Chapter 9, pp.291-321, ISBN: 978-1-60021-902-3
[61] Thermo- and photoinduced voltages in Ag heterodimensional junctions, Applied Physics Letters, 2007, 91(16): 161107
[62] Oxidized macroscopic-long Cu nanowire bundle photoconductor, Applied Physics Letters, 2007, 90: 201119
[63] Effect of a magnetic field on the preparation of silver nanowires using solid electrolyte thin films, Journal of Materials Science & Technology 2007, 23: 39-42
[64] Properties of the incandescent light emitted from double-walled carbon nanotube filament Chin. Phys., 2006, 15(11): 2731-2734
[65] Controlled synthesis of copper nanostructures Materials Science & Engineering A, 2006, 433: 257-260
[66] Carbon nanotube macrobundles for light sensing Small, 2006, 2: 988-993
[67] A technique for controlling the alignment of silver nanowires with an electric field Nanotechnology, 2006, 17: 2378-2380
[68] Photoinduced currents in carbon nanotube / metal heterojunctions Applied Physics Letters, 2006, 88: 131107
[69] Shape-controlled synthesis of silver nanostructures Nanotechnology, 2005, 16: 2412-2414
[70] Synthesis of copper nanowires under a direct current electric field Nanotechnology, 2005, 16: 2030-2032
[71] The growth of thin silver nanowires bundle using RbAg4I5 crystal grain thin film and the ionic conductivity of the thin film Physica B, 2005, 362: 266-270
[72] A novel application of the CuI thin film for preparing thin copper nanowires Physica B, 2005, 362: 231-235
[73] Absorption spectra and ionic conductivity of RbxCs1-xAg4I5 superionic conductors thin films Chin.Phys.Lett, 2005, 22 (1): 239-242
[74] The transmission of organic group in solid electrolyte film, Proceegings of SPIE, 2004, 5774: 237-240
[75] A novel application of the solid electrolyte thin film for preparing copper nanowires, Proceegings of SPIE, 2004, 5774: 87-90
[76] A nano-subprobe grown by electrochemical deposition, Proceegings of International Conference on SPM, 2004, 55
[77] The effect of an electric field on the phase separation of Ag-doped glass, Materials Science & Engineering A, 2004, 367: 272-276
[78] Preparation and structural characterization of superionic conductor RbAg4I5 crystalline grain film, Chin. Phys. Lett., 2003, 20 (5): 756-758
[79] Preparation and microstructure of nanocrystalline Rb0.5Cs0.5Ag4I5 thin films on NaCl substrates, Vacuum, 2003, 71(4): 459-463
[80] Shear force detection using single-tine oscillating tuning fork for scanning near-field optical microscopy, Chin. Phys. Lett., 2003, 20 (3): 338-341
[81] Polarized incandescent light emission from carbon nanotubes, Applied Physics Letters, 2003, 82 (11): 1763-1765
[82] First overtone frequency stimulated quartz tuning fork used for shear-force scanning near-field optical microscopy, Chin. Phys. Lett., 2003, 20(11): 1928-1931
[82] Phase transition and temperature dependence of the A1 low-frequency exciton band parameters in quaternary compound Rb0.5Cs0.5Ag4I5 thin films, Chin. Phys. Lett., 2002, 19: 1326-1328
[84] Observation of the in-vivo reporter of green fluorescent protein in a plant root by scanning near-field optical microscopy, Chin. Phys. Lett., 2002, 19: 1389-1391
[85] Dependence of material phases in multicomponent compounds (RbI-CsI-AgI) thin films on temperature of NaCl substrates, Proceedings of SPIE, 2002, 4918: 109-112
[86] Improvement and application of scanning near field optical microscope based on a piezoelectric bimorph shear force beam, Proceedings of SPIE, 2002, 4923: 31-35
[87] Imaging the GFP in live plant by scanning near-field optical microscopy, Proceedings of SPIE, 2002, 4536: 49-53
[88] Fabrication and application of near-field optical fiber probe, Chin. Phys., 2001, 10(7): 631-635
[89] Fabrication of large cone angle optical fiber probe by dynamic chemical etching method,Acta Physica Sinica,2001,50(12): 2382-2386
[90] 敲击模式扫描近场光学显微镜,清华大学学报,2001,41(6):1-3
[91] Improvement of tapping-mode scanning near-field optical microscope, proceedings of SPIE, 2000, 4223: 23-26
[92] Fabrication of Scanning Near Field Optical Microscope Fiber Probe, The Second Asia-Pacific Workshop on Near Field Optics-Beijing China, 1999, 188-192
[93] Екситоннi спектри потрiйних сполук Ме2AgI3, УФЖ., 1996, 41(4): 471-474
[94] Низкочастотный оптический спектр тройных соединений CsCu2I3 и CsAg2I3, ФТТ., 1996, 38(10): 3005-3011
[95] Оптические спектры и экситоны в тройных соединенияхCsCu2I3 и CsAg2I3, Опт и Спектр.1996, 80(4): 643-647
[96] Excitonic spectra of ternary compounds on the basis of AgI, Proceedings of SPIE, 1995, 2648: 156-160
[97] Оптический спектр и экситоны в суперионном проводнике KAg4I5, Функциональные материалы, 1995, 2(4): 438-444
[98] Оптические спектры и экситоны в тройных соединениях системы (RbI)1-X(CuI)X, Опт и Спектр.1995,78(3): 436-440
[99] Exciton spectrum in superionic RbAg4I5 condoctor, Func. Mater., 1994, 1(1), 51-55
[100] Оптические спектры тонких плёнок суперионных проводников Ag2CdI4 и RbAg4I5, Матерiалознавство i фiзика напiпровiдникових фаз змiнного складу—Тези доповiдей II Украiнськоi конференцii, Нiжин, 1993, 356-358