Remote sensing of the terrestrial ecosystem for climate change studies

Jun Yang
Center for Earth System Science
Tsinghua University
Outline

1 Introduction

2 Observation of the terrestrial ecosystem

3 Integration with climate models

4 Limitations

5 Prospects
1 INTRODUCTION
1 Introduction

Terrestrial ecosystem-Impacts

- Species
- Biomes
- Phenology
- Disturbances
- Global biogeochemistry
1 Introduction

Terrestrial ecosystem-Feedbacks

C feedbacks

Physical feedbacks

(Field et al., Annu. Rev. Environ. Resour. 2007)
1 Introduction

Why remote sensing?

1. Global coverage and high frequency
2. You have no other options
1 Introduction

Climate observation
-the foundation of our understanding of the climate system (Overpeck, 2011, Science)
1 Introduction

- Global coverage and frequency
 - Essential climate variables (ECVs)

<table>
<thead>
<tr>
<th>Domain</th>
<th>Essential Climate Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmospheric (over land, sea and ice)</td>
<td>Surface wind speed and direction; precipitation; upper-air temperature; upper-air wind speed and direction; water vapour; cloud properties; Earth radiation budget (including solar irradiance); carbon dioxide; methane and other long-lived greenhouse gases; and ozone and aerosol properties, supported by their precursors.</td>
</tr>
<tr>
<td>Oceanic</td>
<td>Sea-surface temperature; sea-surface salinity; sea level; sea state; sea ice; ocean colour.</td>
</tr>
<tr>
<td>Terrestrial</td>
<td>Lakes; snow cover; glaciers and ice caps; ice sheets; albedo; land cover (including vegetation type); fraction of Absorbed Photosynthetically Active Radiation (FAPAR); Leaf Area Index (LAI); above-ground biomass; fire disturbance; soil moisture.</td>
</tr>
</tbody>
</table>

(GCOS, 2010)
<table>
<thead>
<tr>
<th>ECVs / Global Products requiring Satellite Observations</th>
<th>Fundamental Climate Data Records required for Product Generation (from past, current and future missions)</th>
</tr>
</thead>
</table>
| **Lakes**
For lakes in the Global Terrestrial Network for Lakes:
Maps of lakes;
Lake levels;
Surface temperatures of lakes | VIS/NIR imagery, and radar imagery;
Altimetry;
High-resolution IR imagery |
| **Glaciers and Ice Caps**
Maps of the areas covered by glaciers other than ice sheets;
Ice-sheet elevation changes for mass-balance determination | High-resolution VIS/NIR/SWIR optical imagery;
Altimetry |
| **Snow Cover**
Snow areal extent | Moderate-resolution VIS/NIR/IR and passive microwave imagery |
| **Albedo**
Directional-hemispherical (black sky) albedo | Multispectral and broadband imagery |
| **Land Cover**
Moderate-resolution maps of land-cover type;
High-resolution maps of land-cover type, for the detection of land-cover change | Moderate-resolution multispectral VIS/NIR imagery;
High-resolution multispectral VIS/NIR imagery |
| **fAPAR**
Maps of fAPAR | VIS/NIR imagery |
| **LAI**
Maps of LAI | VIS/NIR imagery |
| **Biomass**
Research towards global, above-ground forest biomass and forest-biomass change | L band / P band SAR;
Laser altimetry |
| **Fire Disturbance**
Burnt area, supplemented by active-fire maps and fire-radiated power | VIS/NIR/SWIR/TIR moderate-resolution multispectral imagery |
| **Soil Moisture**
Research towards global near-surface soil-moisture map (up to 10 cm soil depth) | Active and passive microwave |
1 Introduction

- You have no other options!!!
2 Observation of the terrestrial ecosystem
2 Observation of the terrestrial ecosystem

- **Land use/land cover change**
 - Impacts of the climate change
 - Snow and ice cover melt
 - Land degradation
 - Feedbacks to climate
 - Surface albedo
 - Surface fluxes of mass and energy
 - \(\text{CO}_2 \)
 - Water vapor
 - Aerosols
 - Momentum
2 Observation of the terrestrial ecosystem

- Land use/land cover change
 - Remote sensing methodology

<table>
<thead>
<tr>
<th>Method</th>
<th>Data</th>
<th>Samples</th>
<th>Time</th>
<th>Resolution</th>
</tr>
</thead>
</table>
| Classification
Visual ISODATA MLC SVM| AVHRR | GLCC2.0 | 1992 | 1km |
| | ENVISAT | GlobCover | 2006,2009 | 300m |
| | MODIS | MCD12Q1 | Yearly | 500m |
| | Landsat | FROM-GLC | 2000,2010 | 30m,250m |

The most **efficient** approaches to monitor land cover and its changes in time over a variety of spatial scales.

(Bontemps et al., 2011, Biogeosciences Discuss)
2 Observation of the terrestrial ecosystem

Land use/Land cover change

(Tucker et al., 1985, Science)

(GlobCover, 2009, ESA)

(FROM-GLC, 2010, Gong et al., 2012)
2 Observation of the terrestrial ecosystem

- **Land use/land cover change**
 - **Major discoveries**

![Radiative forcing components diagram](image)

(IPCC AR4, 2007)
¢ Land use/land cover change

- Existing problems
 - Data inventory and aggregation methods
 - Disagreements in heterogeneous landscapes or transition zones
 - Accuracy <70%
 - Hard to differentiating the stable and the dynamic components of the land cover

Verburg, 2011, Global Change Biology
2 Observation of the terrestrial ecosystem

- Land use/land cover change
 - Existing problems

Remote sensing the Netherlands (LGN4) Remote sensing Europe (CLC2000)

Verburg, 2011, Global Change Biology
2 Observation of the terrestrial ecosystem

- **Land use/land cover change**
 - Future research
 - Data integration
 - Improve validation techniques
 - Harmonization of classification systems
 - Select data to fit the specific applications
 - Incorporate uncertainties in land cover into future assessments
 - Answer the question of global-scale teleconnections

Pielke et al., 2011, WIRES Clim Change
2 Observation of the terrestrial ecosystem

Phenological shifts

- A change in the timing of growth and breeding events
- Indicator of vegetation's response to climate variability
- Alter albedo, C cycle, and hydrological cycle

Graph showing atmospheric carbon dioxide levels measured at Mauna Loa, Hawaii from 1960 to 2000.
2 Observation of the terrestrial ecosystem

- Phenological shifts
 - Remote sensing methodology
 - AVHRR and MODIS data, also Landsat
 - Start of season (SOS) method
 - Find time breaks on Normalized difference vegetation index (NDVI) or Enhanced vegetation index (EVI) curves: first upturn and midpoint
 - Representing the vegetation indices (VI) curves: actual data and curve fitting
2 Observation of the terrestrial ecosystem

- **Phenological shifts**
 - Remote sensing methodology

Seasonal midpoint NDVI (SMN) *(White et al., 2001 Ecosystems)*
2 Observation of the terrestrial ecosystem

● Phenological shifts

Curve fitting method
(Fisher and Mustard, 2007, RSE)
Phenological shifts

- Major discoveries
 - Wall-to-wall coverage of global vegetation since 1982
 - Shift towards earlier spring greening in many region
2 Observation of the terrestrial ecosystem

- Phenological shifts
 - Existing problems
 - Different from ground observations
 - Do not agree with each other
2 Observation of the terrestrial ecosystem

- Phenological shifts
 - Existing problems
 - Possible reasons:
 - Lost of fine-grain distinction
 - Difference in retrieval methods
 - Implementation procedure
2. Observation of the terrestrial ecosystem

 Phenological shifts

 Future research

 • Intercomparison study
 • Validation with ground measurements
 • Complement the VIR/IR data using microwave data
2 Observation of the terrestrial ecosystem

❖ Productivity

- The productivities of the global ecosystem
 - GPP, NPP, NEP
- Impact: variations of productivities
- Feedbacks: global C cycle
2. Observation of the terrestrial ecosystem

Productivity

- **Remote sensing methodology**

\[GPP = \varepsilon \times FPAR \times PAR \approx \varepsilon \times NDVI \times PAR \]

\[NPP = \Sigma(PSN_{net}) - R_g - R_m \]

\[PSN_{net} = GPP - R_{lr} \]

<table>
<thead>
<tr>
<th>FPAR, Fraction of photosynthetically active radiation</th>
<th>PAR, radiation in photosynthetic wavelengths</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSN_{netr}, daily net photosynthesis</td>
<td>R_g, annual growth respiration</td>
</tr>
<tr>
<td>R_{lr}, daily maintenance respiration of leaves and the fine roots</td>
<td>R_m, maintenance respiration of live cells in woody tissues</td>
</tr>
<tr>
<td>(\varepsilon), conversion efficiency or light use efficiency; normally annual plant, 2gC/MJ, woody, 0.2-1.5 gC/MJ</td>
<td></td>
</tr>
</tbody>
</table>

(Running et al., 2004, Bioscience)
2 Observation of the terrestrial ecosystem

- **Productivity**
 - Remote sensing methodology

<table>
<thead>
<tr>
<th>Model</th>
<th>Remote sensing based parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASA</td>
<td>Vegetation Distribution, $fPAR$</td>
</tr>
<tr>
<td>GLO-PEM</td>
<td>$fPAR$, Solar radiation, Temperature, Vapour Pressure Deficit, Soil water</td>
</tr>
<tr>
<td>TURC</td>
<td>Vegetation Distribution, $fPAR$</td>
</tr>
<tr>
<td>SDBM</td>
<td>$fPAR$</td>
</tr>
<tr>
<td>VPM</td>
<td>Vegetation Distribution, $fPAR$</td>
</tr>
</tbody>
</table>

Table 1. Remote sensing based parameters in PEMs

(Liu et al., 2010, IGRASS)
2. Observation of the terrestrial ecosystem

- Productivity
 - Major discoveries
Productivity

Major discoveries

- Overall increase of global NPP
- NPP/GPP ratio varied with climate and geography
- Total terrestrial NPP
 - 56.4 ± 7.9 Pg C yr$^{-1}$ averaged from 46 RS studies
 - 56.2 ± 14.3 Pg C yr$^{-1}$ averaged from 251 inventory and model studies
Productivity

Existing problems

- Overestimation at low-productivity sites and underestimation at high-productivity sites
- Low quality of meteorological inputs (PAR, Temperature, Vapor pressure deficit)
- Assumption of a constant light use efficiency is not true
- Inadequate environmental constrains (VPD, soil water, nutrient availability)
Productivity

Future research

- Use photochemical reflectance index (PRI) as a surrogate of light use efficiency
- More realistic representation of environmental constraints
- Better estimation of respiration components
2. Observation of the terrestrial ecosystem

- Species and biomes
 - Impacts
 - Ecology
 - Evolution
Species and biomes

Remote sensing methodology
- Biophysical characteristics of habitats
- Spatial variability in species richness
- Natural and anthropogenic changes
Species and biomes

Regime shift

- Aptly sudden shifts in ecosystems
- E.g.
 - The formation of Sahara desert
 - Shift in Caribbean coral reefs

(Scheffer and Carpenter, 2003, TREE)
2. Observation of the terrestrial ecosystem

- **Species and biomes**
 - Stable states and Regime shift

(Scheffer 2010, Nature)
2. Observation of the terrestrial ecosystem

- Species and biomes
 - Regime shift

(Lin Songshan 2013)
2 Observation of the terrestrial ecosystem

- **Species and biomes**
 - Regime shift

 Early warming indicators

<table>
<thead>
<tr>
<th>Phenomenon</th>
<th>Method</th>
<th>Signal</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical slowing down</td>
<td>Autocorrelation; Return time</td>
<td>↑</td>
<td>Carpenter et al. 2011</td>
</tr>
<tr>
<td>Increased variability</td>
<td>Variance; σ</td>
<td>↑</td>
<td>Drake and Griffen 2010</td>
</tr>
<tr>
<td>Skewed responses</td>
<td>Skewness</td>
<td>↑</td>
<td>Biggs et al., 2009</td>
</tr>
<tr>
<td>More extremes</td>
<td>Kurtosis</td>
<td>↑</td>
<td>Biggs et al. 2009</td>
</tr>
<tr>
<td>Spatial pattern</td>
<td>Qualitative change</td>
<td>regular</td>
<td>Bailey 2011</td>
</tr>
</tbody>
</table>
2 Observation of the terrestrial ecosystem

- **Regime shifts**

 ![Diagram showing critical slowing down](image)

 Greenhouse–icehouse transition

 - CaCO₃ (%)
 - AR(1) coeff.

 Time (Myr before present)

 Critical slowing down

 (Scheffer et al., 2009, Nature)

 Self-organized spatial pattern

 Critical transition from a self-organized patchy state to a barren state
2. Observation of the terrestrial ecosystem

- **Regime shifts**
 - Remote sensing approach
 - Prove the existence of early warning signals
 - Prove the existence of the “tipping point”
 - Prove the existence of alternative states
2. Observation of the terrestrial ecosystem

Regime shifts

Transition between tropical forest and Savanna
1. Tropical forest and savanna represent alternative stable states
2. Threshold 5%, 60% tree cover
3. Driven by precipitation

(Hirota et al., 2011, Science)
Regime shifts

Thresholds for boreal biome transitions
1. Three states, treeless, savanna, and boreal forests
2. Thresholds: 20%, 40%, 75%
3. Driven by temperature and precipitation

(Scheffer et al., 2012, PNAS)
Regime shifts

- Remote sensing approach
 1. Get MODIS tree canopy cover data (MOD44B)
 2. Extract a random samples of pixels
 3. Analysis of multimodality of the tree cover frequency distribution using latent class analysis
 4. Build the correlation with precipitation and/or temperature
Regime shifts

Future research

- Find the mechanisms that drive the changes
- Identify the character and timing of the transition
- Answer the question: whether the vegetation-climate system has alternative stable states?
3 Integration with climate models
3 Integration with climate models

- **Input of climate models**
 - Provide boundary conditions
 - Reinitialize models
 - Update the state variables
 - Provide constrains
3 Integration with climate models

Homogeneous land cover

Dynamic vegetation model

Dynamic vegetation model with disturbances
3 Integration with climate models

Improve climate models

- Improve the accuracy of model predictions
 - Data assimilation: adjustment of the model state at observation times with measurements of a predictable uncertainties
 - Statistical linear estimation and ensemble assimilation
 - E.g., Land surface models + operational data assimilation schemes → lowered RMSE (27.4-32.2%) *(Ghent et al., 2010, JGR-Atmosphere)*
3 Integration with climate models

- **Validate/calibrate climate models**
 - Compared to the GCM’s outputs directly
 - Combine with in situ measurements
3. Integration with climate models

- Problems
 - Spatio-temporal mismatching
 - Lack of interfaces in climate models
 - Changing mix of observations over time
4 Limitations
4. Limitations

- Short data spans of satellite data
- Biases associated with instrument
- Uncertainties in retrieval algorithms
4 Limitations

- **Short data spans of satellite data**

 Time length of available observations

<table>
<thead>
<tr>
<th>Time length (year)</th>
<th>Terrestrial ECV</th>
</tr>
</thead>
<tbody>
<tr>
<td>0~9</td>
<td>Biomass, Glacier and ice caps</td>
</tr>
<tr>
<td>10~19</td>
<td>Land cover, Albedo, fAPAR, Fire disturbance</td>
</tr>
<tr>
<td>20~29</td>
<td>Lakes, LAI</td>
</tr>
<tr>
<td>30~39</td>
<td>Soil moisture</td>
</tr>
<tr>
<td>40~49</td>
<td>Snow cover</td>
</tr>
</tbody>
</table>

Yang et al. 2013, Nature Climate Change
4 Limitations

- **Biases associated with instrument**
 - Inadequate spatial resolution and temporal frequency
 - Poor calibrations
 - Merging data from different systems
4 Limitations

- Uncertainties in retrieval algorithms
 - Radiative transfer models
 - Uncertainties in common inputs
5 Prospects
5 Prospects

Improvements in

- **Future works**
 - Intercomparison of data sets
 - Innovative use of existing data
 - Rigorous reanalysis

- **Future systems**
 - Dedicated satellite missions
 - Combine passive and active remote sensing
 - High-quality validation networks