姓名:樊海宁

职称:副研究员

办公室:西主楼一区四层404

邮箱:fhn@tsinghua.edu.cn 

 

教育背景

1988.9-1992.7 解放军南京通信工程学院计算机及指挥自动化专业获工学学士

1992.9-1996.5 解放军南京通信工程学院军事通信学专业获军事学硕士

1999.9-2005.1 清华大学计算机科学与技术系获工学博士

 

社会兼职

会议程序委员会委员
International Workshop on the Arithmetic of Finite Fields: WAIFI 2010, WAIFI 2012.

 

研究领域

密码计算,信息安全

 

研究概况

主要从事有限域计算快速算法设计。有限域GF(2^n)广泛应用于密码和纠错码等领域,我们在GF(2^n)并行乘法器设计领域所做出的原创性工作在多数GF(2^n)上是目前国际同类设计方案中的唯一最好结果,例如国家密码管理局所颁布的“SM2椭圆曲线公钥密码算法”中的全部两个GF(2^n)示例域GF(2^193)和GF(2^257),以及被ISO,NIST和ANSI等列为国际标准的“椭圆曲线数字签名算法(ECDSA)”所建议的5个GF(2^n)中的4个。

2016年,美光(Micron)将我们在2005年所设计的移位多项式基乘法器应用于包括3D XPoint(Intel-Micron联合开发)在内的下一代存储芯片,以降低BCH纠错码的译码延时(“Fast Decoding ECC for Future Memories”,IEEE J-SAC)。

奖励与荣誉

2012 IET Information Security Premium Awards

学术成果

综述及专著章节 
[1] M. Hasan and Haining Fan: 《Handbook of Finite Fields》, Ch. 16.7, “Binary extension field arithmetic for hardware implementations”,CRC press, 2013 (Compiled by 88 international contributors.)
[2] Haining Fan and M. Hasan, “A survey of some recent bit-parallel GF(2^n) multipliers,” Finite Fields and Their Applications, vol. 32, pp. 5-43, March 2015 (Invited by the “Twenty Year Anniversary Edition”.)

 期刊论文
[1] Haining Fan, Simple multiplication algorithm for a class of GF(2^n); IEE Electronics Letters, vol. 32, no.7, pp.636-637, 1996.
[2] Haining Fan and Yiqi Dai, Key function of normal basis multipliers in GF(2^n); IEE Electronics Letters, vol. 38, no.23, pp. 1431-1432, Nov. 2002.
[3] Haining Fan and Yiqi Dai, Low complexity bit-parallel normal bases multipliers for GF(2^n); IEE Electronics Letters, vol. 40, no.1, pp. 24-26, Jan. 2004.
[4] Haining Fan and Yiqi Dai, Normal basis multiplication algorithm for GF(2^n); IEE Electronics Letters, vol. 40, no.18, pp. 1112-1113, Aug. 2004.
[5] Haining Fan and Yiqi Dai, Fast bit-parallel GF(2^n) multiplier for all trinomials; IEEE Transactions on Computers, vol. 54, no. 4, pp. 485-490, Apr. 2005.
[6] Haining Fan, Duo Liu and Yiqi Dai, Two Software Normal Basis Multiplication Algorithms for GF(2^n); Tsinghua Science and Technology, vol. 11, no.3, pp. 264-270, 2006.
[7] Haining Fan and M. Hasan, Relationship between GF(2^m) Montgomery and Shifted Polynomial Basis Multiplication Algorithms; IEEE Transactions on Computers, vol. 55, no. 9, pp. 1202-1206, Sept. 2006.
[8] Haining Fan and M. Hasan, Fast Bit Parallel Shifted Polynomial Basis Multipliers in GF(2^n); IEEE Transactions on Circuits & Systems I: regular papers, vol.53, no.12, pp.2606-2615, 2006.
[9] Haining Fan and M. Hasan, A New Approach to Subquadratic Space Complexity Parallel Multipliers for Extended Binary Fields; IEEE Transactions on Computers, vol. 56, no. 2, pp. 224-233, Feb. 2007.
[10] Haining Fan and M. Hasan, Comments on ‘Five, Six, and Seven-Term Karatsuba-Like Formulae’; IEEE Transactions on Computers, vol. 56, no. 5, pp. 716-717, May 2007.
[11] Haining Fan and M. Hasan, Subquadratic computational complexity schemes for extended binary field multiplication using optimal normal bases; IEEE Transactions on Computers, vol. 56, no. 10, pp. 1435-1437, Oct. 2007.
[12] Haining Fan and M. Hasan, Alternative to the Karatsuba algorithm for software implementations of GF(2^n) multiplications; IET Information security, vol. 3, no. 2, pp. 60-65, 2009.
[13] Haining Fan, Jiaguang Sun, Ming Gu and Kwok-Yan Lam,Overlap-free Karatsuba-Ofman polynomial multiplication algorithms; IET Information security, vol. 4, no. 1, pp. 8-14, 2010. (相关专利:ZL 2010 1 0279491.X  基于分治的亚二次多项式乘法器)
[14] Haining Fan, Jiaguang Sun, Ming Gu and Kwok-Yan Lam, Obtaining More Karatsuba-Like Formulae over the Binary Field; IET Information security, vol. 6, no. 1, pp. 14-19, 2012.
[15] Cheng Su and Haining Fan, Impact of Intel's new instruction sets on software implementation of GF(2)[x] multiplication; Information Processing Letters, vol. 112, pp. 497-502, 2012.
[16] Xi Xiong and Haining Fan, GF(2^n) bit-parallel squarer using generalised polynomial basis for new class of irreducible pentanomials, IET Electronics Letters,Vol. 50,No. 9,pp. 655–656,2014.
[17] Jiangtao Han and Haining Fan, GF(2^n) Shifted Polynomial Basis Multipliers Based on Subquadratic Toeplitz Matrix-Vector Product Approach for All Irreducible Pentanomials, IEEE Transactions on Computers, vol. 64, pp. 862-867, March, 2015.
[18] Yongjia Wang, Xi Xiong and Haining Fan, GF(2^n) redundant representation using matrix embedding for irreducible trinomials, International Journal of Foundations of Computer Science, vol. 27, pp. 463-478,2016.
[19] Haining Fan, A Chinese Remainder Theorem Approach to Bit-Parallel GF(2^n) Polynomial Basis Multipliers for Irreducible Trinomials, IEEE Transactions on Computers, vol. 65, no.2, pp. 343-352,2016.